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bstract

Ion dynamics in non-perfect quadrupole traps differ from those in a pure quadrupole field. We obtain an analytic expression for a quadrupole field
uperimposed with weak, higher-order multipole fields. Single ion dynamics in such trapping fields close to the instability point are investigated.
e show that for an in-phase octopole field, oscillating envelopes of the axial displacement grow exponentially with the parameter deviation;
hereas for an out-of-phase octopole field the growth of the oscillating envelopes follows a square-root law. A hard-sphere scattering model is
ssumed to incorporate collisions with buffer-gas molecules. The collision frequency and cross-section are defined. A simulation algorithm for
any-ion dynamics is developed based on the Verlet algorithm and Monte Carlo techniques. We show how a weak octopole field affects the mass

esolution in a significant way.
2007 Elsevier B.V. All rights reserved.
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. Introduction

Ions can be trapped and held at a well-localized position using
number of different schemes. The most popular schemes, first

ntroduced by Paul and Steinwedel in 1953 [1] are based on the
ormation of a quadrupole electric field using a set of three elec-
rodes. Ideally, the surfaces of the electrodes are hyperboloids
f revolution, following the equipotential surfaces of an ideal
uadrupole potential. In reality, simpler shapes are often used
hen the resulting small deviations from a pure quadrupole
otential can be tolerated.

The Paul trap is, theoretically, an ion trap with perfect
uadrupole geometry. In this case the field is uncoupled in the
hree coordinate directions so the forces in each direction can be
etermined separately, and the ion trajectories can be described
y the Mathieu equation [2–4]:

d2u
dτ2 + [au − 2qu cos(2τ)]u = 0; u = x, y, or z (1)

n Eq. (1) τ is the dimensionless time defined as τ = Ωt/2 with
the ac frequency, also referred as rf (radio frequency) in mass
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5827-3559, USA.
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pectrometry; au and qu are, respectively, dimensionless dc and
c amplitudes defined as

u = χuU, qu = χuV,

ith χu = Iu

(m/e)(r2
0 + 2z2

0)Ω2
, Iu =

{
−2 for u = x, y

4 for u = z

/e is the ion’s mass-to-charge ratio, r0 and z0 geometry param-
ters (see Fig. 1), and U and V are, respectively, the dc and
f voltage at the ring electrode with the end-caps grounded.
ccording to the Floquet theorem [5,6] stable solutions of the
athieu equation, corresponding to stable ion trajectories in
pure quadrupole field, are known to have general form of a
ourier–Taylor series:

(τ) = exp(iβuτ)
∞∑

n=0

A2n,u exp(2inτ) + c.c. (2)

ere, βu is the Floquet frequency depending on the dc and rf
mplitudes au and qu, its value is usually altered by varying the
f amplitude; and c.c. stands for complex conjugate. Solutions of
he Mathieu equation will grow unbounded when the resonance

onditions are met; i.e., βu = 0, 1, 2, . . . In this paper we only
tudy the resonance instability with βz = 1, corresponding to one
alf of the rf frequency. When βz > 1 ions are ejected from the
on trap and are detected.

mailto:cwu@revionics.com
dx.doi.org/10.1016/j.ijms.2006.12.007
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Fig. 1. Cross-sectional view of a typical 3D “truncated” ion trap with
r0 = z0 = 7.07 mm. The potential Φ(r, z) obtained with FDM is plotted as grey
s
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Table 1
Expansion coefficients for the truncated ion trap shown in Fig. 1
(r0 = z0 = 7.07 mm) with (CH

n ) and without (CT
n ) holes on the end-cap electrodes

for �Φ = ΦR − ΦE = 1

n CT
n CT

n /C2 (%) CH
n CH

n /C2 (%)

0 0.66360965 99.541 0.66413665 99.620
2 −0.66376241 99.564 −0.66238876 99.358
4 −0.00341752 00.513 −0.00293904 00.441
6 −0.00055028 00.083 −0.00037950 00.057
8 −0.00037885 00.057 −0.00035341 00.053

10 −0.00004673 00.007 −0.00004250 00.006
12 −0.00000739 00.001 −0.00000712 00.001
14 −0.00000055 00.000 −0.00000053 00.000

C
s

2

p
t
e

r

H
i
t
b
[
u
a
s
t
i
s
i
t
d
a
b
a

2

t
i
f
F

φ

cale from white for Φ = ΦR to black for Φ = ΦE. The vertical dash line is the
xis of rotational symmetry. The expansion coefficients Cn for this geometry are
hown in the fourth column of Table 1.

Designers of new ion traps have purposely created weak
uperimposed multipole fields to improve mass resolution, scan
peed and storage stability; a well known example is the Finni-
an MAT ion trap [7], whose end-cap electrodes are slightly
tretched from the center of the device. Even if the electrodes
re shaped precisely to generate pure quadrupole fields, weak
ultipoles are introduced by the edges of the electrodes, and
hen there are small holes on end-caps for ion injection and

jection. Therefore, it is impossible to neglect completely the
igh-order multipoles in the trapping field for stability analysis
or ion trajectories.

In this study we write the trapping-field potential in terms of
ultipoles; i.e.,

(r, t) =
∑

n

Cn cos(Ωt)φn(r) (3)

here φn(r) is the 2n-pole potential, and Ω is the rf fre-
uency. The expansion coefficients Cn in Eq. (3) are determined
sing a hybrid LS-FD method (least square-finite difference
ethod). Examples of expansion coefficients are presented in
able 1.

The dynamics of ion–buffer-gas collision is also modeled in
his study. We derive the collision frequency and the collision
ross-section, and formulate the probabilistic update rules for
he collision dynamics. The collision cross-section is estimated
sing the Gaussian 03 program package that optimizes the ion’s
eometry by minimizing its bonding energies.

In Section 3 we present a generalized MD (molecular dynam-
cs) algorithm for ionic motion in a trapping field described by
q. (3). Not only is the trapping filed taken into account, but also
he ion–ion interaction and ion–buffer-gas collisions are inte-
rated in our MD model. Finally, in Section 4 we summarize
nd discuss results obtained in this paper.

T
I

2 = −2/3 is the quadrupole coefficient of the pure quadrupole trap with the
ame r0 and z0.

. Single-ion dynamics

For a single ion with mass-to-charge ratio m/e in a trap-
ing field the equation of motion can be written as, according
o classical electrodynamics [8], r̈ = −(e/m)∇φ(r, t); or, more
xplicitly [2–4]:

¨(t) = − e

m
[U − V cos(Ωt)]

∑
n

Cn∇φn(r(t)) (4)

ere, U and V are defined below Eq. (1), φn = (ρ/r0)nPn(cos θ)
s the 2n-pole potential in cylindrical coordinate system with Pn

he Legendre polynomial of order n; the Cn can be determined
y a hybrid LS-FD method similar to that of Wang and Franzen
9] who evaluated the potential value along the “truncating line”
sing a numerical method such that all the potential values at
closed boundary are known. The only difference is that we

olve the Laplace equation directly with FDM to get the poten-
ial values at open areas such as lines AB, CD, EF, and GH
n Fig. 1. The Laplace equation was solved on the entire space
hown in Fig. 1. We found that electrodes outside the trap also
nfluence the potential within the trap, same as Ding reported in
heir calculations [10]. The electrode’s voltages (potentials) are
efined as ΦE = 0 and ΦR = 1 V. Once all the potential values on
closed boundary are known, the expansion coefficients Cn can
e determined readily using the LSM [11]. Examples of the Cn

re listed in Table 1.

.1. The octopole field

As opposed to Eq. (1) where ionic motion is independent in
he three spatial directions, the ionic motion described by Eq. (4)
s slightly different due to high-order multipoles in the potential
unction. For a truncated ion trap, such as the one shown in
ig. 1, the leading higher-order term is the octopole potential:

4(r, z) =
(

ρ
)4

P4(cos θ) = 8z4 − 24z2r2 + 3r4

4 (5)

r0 8r0

he z2r2 term in Eq. (5) couples the axial and the radial motions.
n this case the equation of motion along the z-axis, accurate to
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A stable non-trivial solution for negative octopole fields,
emerging from the trivial solution η = 0 at the supercritical pitch-
fork bifurcation, grows with the square-root of the parameter

Fig. 2. Supercritical (a) and subcritical (b) bifurcations in the μ–η plane, arrows
show the flow directions; (c) hysteresis loop (bistability). Here, η is proportional
to the slowly varying envelope of the axial position of the ion, z, and μ is the
bifurcation parameter depending on βz and having the same sign as (βz − 1).
X.-G. Wu / International Journal o

he octopole term, is

ττ + [ãz(r, z) − 2q̃z(r, z)] cos(2τ)z = 0 (6)

here ãz(r, z) = az[1 + ε(z2 − 3r2/2)] and q̃z(r, z) = qz[1 +
(z2 − 3r2/2)] are, respectively, the effective dc and rf ampli-
udes in the presence of weak octopole field, zττ is short for
2z/dτ2, and ε is a small parameter proportional to the octopole
xpansion coefficient C4 and can be expressed explicitly as

= 4C4

r2
0

(7)

urther simplicity can be made by using an approach adopted
n Ref. [12]; Eq. (6) then reduces to

ττ + [az − 2qz cos(2τ)]F (z) = 0 (8)

ith F (z) = (1 − ε3r̄2/2)z + εz3. In F (z) r̄ is the radial dis-
lacement averaged over one secular cycle. Here, again, the axial
otion is decoupled from the radial motion when the coupling

s insignificant (∼ε). For small values of r̄ (i.e., when ions are
lose to the center of the trap) F(z) can be simplified further

(z) = z + εz3 (9)

ince the dropped term in the linear coefficient is of order ε. We
ill use Eq. (9) as the non-linear field for further analyses.

.2. The non-linear Mathieu equation, bifurcations, and
on ejection speed

Eq. (8) can be written as a non-linear Mathieu equation of
he general form

ττ + [α2 + p(τ)]F (z) = 0 (10)

here p(τ) is time-periodic and F(z) is a non-linear function
f z. Parametric excitation in second order differential equa-
ions with periodic coefficients such as Eq. (10) has been studied
xtensively since last decade [13–17].

A bifurcation is a qualitative change in the dynamics of a sys-
em as a control (excitation) parameter exceeds a critical value,
uch as βz = 1. The control parameters in the non-linear Math-
eu equation are the tuning parameter σ = α2 − n2 (similar to
z), and the Fourier expansion of p(t) containing non-zero terms
2n e2inπ and a−2n e−2inπ (similar to qz). Eq. (10) can be rewrit-
en in a complex normal form (see, for instance, Refs. [18,19]
or normalization of time-dependent vector fields):

τ = inξ + iσ

2n
ξ + ia2n

2n
e2intξ∗ + · · · + gξ|ξ|2 + O(ε) (11)

here ξ = nz − i dz/dτ and g = 3c3/4. The normal form (11) can
e made autonomous through the transformation ξ = √

ε einτη:
dη

dT
= iση + ia2nη

∗ + √
εK + igη|η|2 + O(ε) (12)

here T = ετ, and the explicit expression for K is lengthy and
an be found in Ref. [14]. When p(τ) = 2a2 cos 2τ [cf. Eq. (8)]

T
i
s
g
(
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e have K = 0 (see Ref. [14] for proof), Eq. (12) thus reduces to

dη

dT
= iση + ia2nη

∗ + igη|η|2 + O(ε) (13)

t is not difficult to show that, for sufficiently large radius R in
he Re(η)–Im(η) plane, the disc |η| < R is invariant under the
ow (13), and that the only attractors in this region are fixed
oints. For simplicity we only consider the case where n = 2 that
orresponds to P(τ) = 2a2 cos(2τ). When a2n + σ > 0 and g < 0
i.e., when βz > 1 and when the octopole filed is negative or out of
hase with the quadrupole field) the bifurcation is supercritical
also called pitchfork bifurcation) and the non-trivial solution
η|2 = (a2n + σ)/|g| is stable; whereas when a2n + σ > 0 and g > 0
i.e., when βz > 1 and when the octopole field is positive or in-
hase with the quadrupole field) the bifurcation is subcritical and
he non-trivial solution |η|2 = −(a2n + σ)/g is unstable [20–23].
he supercritical and subcritical bifurcations are illustrated in
ig. 2(a and b) where the stable solutions are plotted with solid
he stable (unstable) solutions of Eq. (13) are plotted as solid (dashed) lines; μc

s the value of the bifurcation parameter at which η bifurcates from the trivial
olution η = 0. In (c) η will grow exponentially from 0 to ηs for μ > μc. The
rowing exponent can be calculated by solving the linear stablity matrix of Eq.
13) at μ = μc for eigenvalues.
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Fig. 3. The ejection time t vs. the octopole-to-quadrupole ratio r = C /C
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eviation ∼√
(a2n + σ)/|g|, this is exactly what is observed by

he authors of Ref. [24] in their computer simulations for out-
f-phase octopole fields. Recall that the trivial solution implies
hat ξ = 0, i.e., 2z − i dz/dτ = 0, or

t(τ) = zt(0) e−2iτ (14)

his is a harmonic oscillation with the rf frequency. Note that
t(0) is an initial z-displacement that can take any value. As
hown in Fig. 5A and B in Ref. [24], the growth of oscillating
nvelopes always follows the same square-root law, no matter
hat the value of initial amplitude is.
The unstable solution |η|2 = −(a2n + σ)/g for g > 0 and

2n + σ > 0 implies that there exists a stable, upper branch of
he steady-state solution that can be obtained by using an addi-
ional term of order ε in Eq. (11). The canonical form of such
n autonomous equation is

dη

dT
= iμη + igη|η|2 − ihη|η|4 (15)

here h is a real, positive parameter. The stable upper branch is

s =
[

1

2h
(−g +

√
g2 + 4hμ)

]1/2

(16)

hen a2n + σ > 0 (i.e., βz > 1) η grows exponential from the triv-
al solution η = 0 [corresponding to z(τ) = zt(τ), cf. Eq. (14)] to
he steady-state solution ηs (the upper branch). This is called
ysteresis loop or bistability [18,19]. This scenario is illustrated
n Fig. 2(c): the trivial solution loses its stability at critical point

c and jumps to the upper stable branch ηs; both the trivial solu-
ion and ηs are stable between the parameter range μ′

c ≤ μ ≤ μc
hence the term bistability), and ηs does not exist when μ < μ′.
ig. 5D in Ref. [24] shows such exponential growth (jump) of the
(t) for positive octopole fields when the scan parameter exceeds
he subcritical bifurcation point.

Note that the exponential growth of z(t) beyond the bifur-
ation point corresponds to the ejection of ions from the ion
rap. Therefore, when the octopole field is positive (negative)
he ejection is exponential (a square-root law). This will directly
ffect the ejection speed and the mass resolution since slow ejec-
ions may cause adjacent mass peaks to overlap, resulting in

significantly reduced mass resolution. To illustrate how the
ign of octopole field affects the ejection speed, we integrate
q. (4) to get ion’s axial displacement z(t). When z(t) > z0 the

on is considered as ejected (see Fig. 1). One can now define
he ejection time te at which z(t) = z0. Fig. 3 shows the ejec-
ion time te versus the octopole-to-quadrupole ratio, defined as
oq = C4/C2. As is clearly seen, when roq goes negative, the te
ncreases significantly.

.3. Ion–buffer-gas interaction
The presence of a buffer-gas such as helium or hydrogen,1

t a pressure of approximately 10−3 Torr, significantly enhances
he mass resolution, sensitivity and detection limit of an ion

1 For the use of hydrogen as the buffer-gas, see Ref. [26].

H
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diamonds) for scan rate = 7.5 �s/Da, rf frequency Ω = 1 MHz, and ion’s mass
o charge ratio m/e = 185. The te is plotted in units of �s. The smooth curve is a
olynomial fit for te.

rap. The effect of collisions between trapped ions and the rela-
ively slow moving and much less massive buffer-gas molecules
auses viscous-like damping of ionic motion. This causes the
ons’ orbits to collapse closer to the center of the ion trap.

Let us consider the collision frequency between an ion with
ts velocity ṙ and buffer-gas molecules of mass mb at temperature

[25,26]:

= nb

(
mb

2πkBT

)3/2 ∫ 2π

0
dφ

∫ π

0
sin θ dθ

×
∫ ∞

0
|ṙ − v| e−mbv

2/2kBT σv2 dv (17)

here nb is the number density of the buffer-gas molecules,
its velocity (v = |v|), kB the Boltzmann constant, and σ the

ollision cross-section. We assume that both the trapped ion and
he buffer-gas molecule can be modeled by hard spheres, i.e.,
he interaction potential is infinity when the two particles are in
ontact and zero when separated. Eq. (17) can thus be simplified
s [26]:

= ṙσ
P

kBT
= ṙπD̄2 P

kBT
, D̄ = di + db

2
(18)

ere, D̄ is the average diameter of the tapped ion and the
uffer-gas molecule, P the pressure of buffer-gas, and T is the
emperature. The collision frequency f measures how often col-
ision events occur.

Furthermore, collisions between hard spheres are elastic; i.e.,
oth momentum and kinetic energy are conserved in the colli-
ion. This leads to a simple update law for an ion’s post-collision
omentum p′

i:

′
i = 2miRz(−φb)Ry(−θb)vCM − pi (19)

ere, pi is the pre-collision momentum; vCM the pre-collision
enter-of-mass velocity of the ion and a buffer-gas molecule;

b and θb are, respectively, the random rotation and scattering
ngles; and Ry and Rz are the usual rotation matrices [27]. The
ype of elastic collision described above is called hard-sphere
cattering. The detailed derivation of Eq. (19) is omitted here
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ig. 4. Optimized molecular structure for reserpine. Its diameter is estimated to
e, when assumed to be a sphere (dash line), di = 11.5 Å.

ince this is a classical problem in mechanics and references are
eadily available.

.4. Estimating ions’ diameter

Our final challenge now is to calculate the diameter of the
rapped ion, di, in Eq. (18), for the calculation of the colli-
ion frequency f. The geometric structures of molecules with
edium to large size can be optimized with density func-

ional methods at the B3LYP/6-31G* level [28–30]. Minimum
nergy path calculations will be performed to optimize the
olecule’s geometry and thus to estimate its diameter di. Fig. 4

hows an optimized 3D structure for a reserpine molecule. The
alculations were carried out with the Gaussian 03 program
ackage [31], and the ion’s diameter was estimated to be, assum-
ng the ion is a sphere, di = 11.5 Å. According to this value,
he cross-section for hard-sphere collisions can be calculated

s σ = πD̄2 = π(di + db)2/4 ≈ 167.1 Å
2
. Here, we used the

b ≈ 3.1 Å [32] for helium as the buffer-gas. It should be noted
hat σ ≈ 167.1 Å2 is a very rough estimation since both ions and
uffer-gas molecules are modeled as hard spheres; the experi-
entally measured collision cross-section for reserpine is about

.7 times of our value [33].

. Many-ion dynamics and simulations

.1. Ion–ion interaction

There are two fundamental laws of electrostatics [8]. The first
s Coulomb’s law, which describes the force between two point
harges; the second is the law of superposition, which extends
oulomb’s law to more than two charges. Consider a system with
trapped ions. The total Coulomb force acting on the ith ion

s, according to Coulomb’s law, FC
i = (ei/4πε0)

∑
j 
=iej(ri −

j/|ri − rj|3). Equation of motion (4) can then be written as

¨i = − ei

mi

∇Φ(ri; t) + ei

4πε0mi

∑
j 
=i

ej

ri − rj

|ri − rj|3 ,
, j = 1, 2, . . . , N (20)

he calculation of the Coulomb forces FC
i is time-consuming

nd scales to N2 where N is the total number of ions in the

r
t
2
fi
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imulation. For large values of N the simulation will take an
normous amount of time. To overcome this slowness problem
e adopt a space-charge model called reduced-pressure model

34]. In this approximation the space-charge effect is modeled
y a reduced buffer-gas pressure such that the same space-charge
istribution and the same mass spectra can be generated. With
his model one can get linear scalability with N in simulating
he Coulomb force effect, resulting in a much faster simulation
peed.

.2. Molecular dynamics

The equations of motion (20) describe a many-body dynamic
ystem with 6N degrees of freedom. Due to the complicated
ature of this system, there is no analytical solution to such
quations of motion; they must be solved numerically. In this
aper we adopt the velocity Verlet algorithm [35] to solve Eq.
20). The Verlet algorithm is among several computational meth-
ds that calculate the time-dependent behavior of a many-body
olecular system by integrating its equations of motion with a
nite step [36–38].

.3. Probabilistic update rules

We adopt Monte Carlo techniques to simulate ion–buffer-gas
ollisions. More specifically, a hit-and-miss rule is applied to
computer-generated random number at equally spaced time

nterval to decide whether a random collision should occur at
ime t for ion i. The average collision per unit of time is designed
o match f in Eq. (17), the collision frequency. When a colli-
ion occurs, we generate a random velocity for the buffer-gas
olecule from the Maxwell–Boltzmann distribution for given

ressure, temperature and mass. Once the random velocity is
enerated, we use Eq. (19) to update ion’s post-collision momen-
um.

.4. Mass spectra

The most important usage of an ion trap is the mass-selection
nstability scan. A mass spectrum can be constructed by counting
umbers of ions exiting the trap at each rf cycle. By increas-
ng linearly the rf field amplitude V0 (linear scan) ions with
ifferent m/e values are ejected at different rf voltages. Fig. 5
hows the mass spectrum for reserpine ions with seven iso-
opes (mass to charge ratio m/e ranging from 607 to 613). The
rapping-field amplitudes are U = 0, and V (t) = 4150(1 + vt) V
ith v = 6 × 10−8Ω/π and Ω = 2π × 106 s−1. As clearly seen

n the figure, for the same scan rate v an additional octopole
eld can affect the mass resolution a great deal. For an in-phase
ctopole field all seven mass peaks are resolved, whereas for
n out-of-phase octopole field the mass peaks overlap, showing
nly one broad peak approximately 8 Da wide. To resolve the
verlapped mass peaks in this case, we need a much slower scan

ate v. This phenomenon can be explained by the bifurcation
heory of the non-linear Mathieu equation discussed in Section
; i.e., when the octopole field is in-phase with the quadrupole
eld, the ejection is exponential in time; when the octopole field
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Fig. 5. Simulated mass spectra with 205,900 reserpine ions and m/e = 607–613
for three sets of non-pure quadrupole expansion coefficients. Thick line (labeled
A): in-phase octopole field with expansion coefficients listed in the second col-
umn of Table 1; thin lines: out-of-phase octopole field with same expansion
coefficients except that C4 = −2CT (spectrum B), and C4 = −3CT (spectrum
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4 4
). For all the spectra the buffer-gas (helium) pressure is 10−3 Torr and temper-
ture is 300 K. The reserpine–helium collision cross-section is estimated to be
= 167.1 Å2. The ordinate N̄ is the normalized ion count.

s out-of-phase with the quadrupole field, the ejection follows
square-root law. Therefore, two adjacent mass peaks can be

esolved if and only if the ejection time is short compared with
he time needed to scan through the two mass peaks.

. Discussion

The simple bifurcation analysis near the instability threshold
rovides an analytical prediction for ejection speed. A slight
ariation in a trap’s geometry that creates a small, in-phase
ctopole field may result in an improvement of mass resolu-
ion because the octopole field increases the ejection speed. This

ethod can be extended readily to other non-linear resonance
nstabilities, such as the βr + βz = 1 instability or quasi-periodic
xcitation, as long as two well-separated scales exist such that
ne can transform the non-linear equation to a normal form using
perturbation expansion method. This will help engineers to

esign new traps with higher mass resolution, scan speed and
torage stability.

We should also mention earlier work by Sudakov [24] and
akarov [39]. They both studied the inflorescence of a weak

ctopole on Mathieu equation using the so called pseudopoten-
ial well approximation [40] and got similar results for slowly
arying envelope of the ions’ axial displacement. Based on the
eneral non-linear Mathieu equation (10) with F(z) as an arbi-
rary polynomial, our approach is more general and can be
eadily extended to study the influence of a single high-order
ultipole or a superposition of any number of high-order mul-

ipoles, as long as their magnitude is small compared to that of
he quadrupole.

There are various ways to create a weak, in-phase octopole
eld. Examples include adding a bump to the exit end-cap, or

tretching end-caps from the center of the device by a small
istance δ. It should be noted that there exists an optimized
alue for octopole field amplitude. For a stretched ion trap with
eometry shown in Fig. 1, for instance, the optimized octopole

f
r
t
E
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eld amplitude corresponds to a stretching distance δ ≈ 1 mm.
his agrees with both numerical and real experiments.

Our hard-sphere scattering model described in Section 2
mplies that any ion–buffer-gas interactions are necessarily elas-
ic collisions. Clearly this model does not do justice to the long
ange molecular interaction. Furthermore, the assumption of
lastic collisions implies that no kinetic energy is lost or cre-
ted in the process. We know that buffer-gas molecules such as
elium or hydrogen have numerous excited states and they can
ct as energy sources or sinks during the collision processes.
herefore, both the trapped ions and the buffer-gas molecules
an absorb or emit discrete amounts of energy during transi-
ions from one atomic state to another. However, the assumption
f elastic hard-sphere scattering has the advantage of making
he collisions readily soluble. In most literatures the buffer-gas
ffects are modeled as a continuous damping force fd = −κṙ
ith κ the damping constant. This force would cause all the sta-
le trajectories to damp to the center of the trap as t → ∞. In
act, even a single ion in the presence of damping gas would
ot relax to a full stop at the center of the trap, because the ran-
om bombardment by buffer-gas molecules would continuously
xcite the ion. Our model at least correctly reflects the fact that
here exists a balance between collision focusing and collision
xcitation, and introduces randomness into the ionic motion.

The use of 2D traps is rapidly becoming important in mass
pectrometry [41]. A 2D ion trap has a greater ion trapping
fficiency, greater ion capacity before observing space-charging
ffects, and a faster ion ejection rate than a traditional 3D ion
rap (Paul trap) mass spectrometer. This is because for a 3D
rap ions need to be confined to a small volume at the center of
he trap for optimum performance while for a 3D trap ions can
pread out in the axial dimension without degrading the perfor-
ance. The governing equations for ionic motion in a 2D trap is

lso the Mathieu equation of the form (1) with u = y or z, or the
on-linear Mathieu equation of the form (10) for z when weak,
igh-order multipoles are taken into account. All our analyses
nd simulation algorithms can be directly applied to the 2D ion
rap.

Ion traps are now purposely designed with non-perfect
uadrupole geometry. Significant efforts have been made to
mprove the mass resolution and correct mass shift caused by
igher-order multipole fields. This work opens an easy and quick
ay to serve these purposes. A systematic numerical inves-

igation can be carried out to determine, e.g., the optimized
umps’ size and end-caps’ stretching distance, or the param-
ters in quasi-periodic excitation field. Perhaps one of the most
nteresting extensions of this work is to develop theory and algo-
ithms for an additional dipole field; investigating quasi-periodic
xcitation with an rf modulation will also be a challenging task.
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